Supercooled water in PVA matrixes. II. A molecular dynamics simulation study and comparison with QENS results.

نویسندگان

  • Ester Chiessi
  • Francesca Cavalieri
  • Gaio Paradossi
چکیده

Molecular dynamics (MD) simulations were carried out to elucidate the dynamic behavior of water confined in poly(vinyl alcohol), PVA, hydrogels. Model topology is supported by experimental network parameters, and simulation results are compared to an incoherent quasielastic neutron scattering (QENS) investigation carried out on PVA hydrogels. From the QENS dynamic scattering law (part I), a random jump model was adopted for the description of water diffusion to extract a microscopic diffusion coefficient and a residence time between two "jumps". In the present work, consistently with this framework, water diffusion parameters as diffusion coefficients and residence times have been evaluated using the mean square displacement of water in a time window of 10 ps and the time autocorrelation function of water hydrogen bonds. The calculated parameters are in good agreement with the experimental ones, giving confidence to this approach. Further developments are in progress to take into account a more realistic description of hydrogel structure in the molecular dynamics simulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slow dynamics of supercooled water confined in nanoporous silica materials

We review our incoherent quasielastic neutron scattering (QENS) studies of the dynamics of supercooled water confined in nanoporous silica materials. QENS data were analysed by using the relaxing cage model (RCM) previously developed by us. We first use molecular dynamics (MD) simulation of the extended simple point charge model (SPC/E) for bulk supercooled water to establish the validity of th...

متن کامل

Study of Slow Dynamics in Supercooled Water by Molecular Dynamics and Quasi-Elastic Neutron Scattering

The slow dynamics of supercooled water is studied by modelling the spectrum of test particle fluctuations: intermediate scattering function (ISF). The theoretical models are compared with experimental measurements by quasi-elastic neutron scattering (QENS) and molecular dynamics (MD) simulation results. The dynamics of supercooled water can be decoupled into a product of translational and rotat...

متن کامل

Removal of Heavy Metal Particles by LTJ, ANA, SVR, BEC and MER zeolites particles: A Molecular Dynamics Simulation Study

In present study, molecular dynamics simulation of Cadmium (II), Lead (II) and Copper (II) removal from aqueous electrolyte solutions using the ion-exchange process with the zeolite particles was done. The results showed that, most of the particles had the highest affinity of ion exchanging with Lead (II) and the lowest affinity with Copper (II). The calculated mean ion-exchange ratios showed t...

متن کامل

Molecular Dynamics Simulation of Water in Single WallCarbon Nanotube

The overall aim of this study is to calculate some water properties in the single wall carbon naotubes (SWCNT) and compare them to the bulk water properties to investigate the deviation of water properties inside the SWCNT from those in the bulk. Here some physical and transport properties of water molecules in the single wall carbon nanotube were reported by performing molecular dynamics (MD) ...

متن کامل

Molecular Dynamics Simulation of Potassium Chloride Melting (II. Constant Volume and Constant Pressure Simulation of Filled System)

We have used a simple ionic potential to simulate the melting of KCI pseudo-infinite crystal. Two MD simulations, one with constant Volume and the other with constant pressure condition are performed. These results are compared with the previous micro-sample simulation results. In the constant volume simulation the melting temperature increase substantially with increasing pressure. A method fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 109 16  شماره 

صفحات  -

تاریخ انتشار 2005